Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation

نویسندگان

  • K Benedikt Möllers
  • David Cannella
  • Henning Jørgensen
  • Niels-Ulrik Frigaard
چکیده

BACKGROUND Microbial bioconversion of photosynthetic biomass is a promising approach to the generation of biofuels and other bioproducts. However, rapid, high-yield, and simple processes are essential for successful applications. Here, biomass from the rapidly growing photosynthetic marine cyanobacterium Synechococcus sp. PCC 7002 was fermented using yeast into bioethanol. RESULTS The cyanobacterium accumulated a total carbohydrate content of about 60% of cell dry weight when cultivated under nitrate limitation. The cyanobacterial cells were harvested by centrifugation and subjected to enzymatic hydrolysis using lysozyme and two alpha-glucanases. This enzymatic hydrolysate was fermented into ethanol by Saccharomyces cerevisiae without further treatment. All enzyme treatments and fermentations were carried out in the residual growth medium of the cyanobacteria with the only modification being that pH was adjusted to the optimal value. The highest ethanol yield and concentration obtained was 0.27 g ethanol per g cell dry weight and 30 g ethanol L(-1), respectively. About 90% of the glucose in the biomass was converted to ethanol. The cyanobacterial hydrolysate was rapidly fermented (up to 20 g ethanol L(-1) day(-1)) even in the absence of any other nutrient additions to the fermentation medium. CONCLUSIONS Cyanobacterial biomass was hydrolyzed using a simple enzymatic treatment and fermented into ethanol more rapidly and to higher concentrations than previously reported for similar approaches using cyanobacteria or microalgae. Importantly, as well as fermentable carbohydrates, the cyanobacterial hydrolysate contained additional nutrients that promoted fermentation. This hydrolysate is therefore a promising substitute for the relatively expensive nutrient additives (such as yeast extract) commonly used for Saccharomyces fermentations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feasibility of CO2 mitigation and carbohydrate production by microalga Scenedesmus obliquus CNW-N used for bioethanol fermentation under outdoor conditions: effects of seasonal changes

BACKGROUND Although outdoor cultivation systems have been widely used for mass production of microalgae at a relatively low cost, there are still limited efforts on outdoor cultivation of carbohydrate-rich microalgae that were further used as feedstock for fermentative bioethanol production. In particular, the effects of seasonal changes on cell growth, CO2 fixation, and carbohydrate production...

متن کامل

Fermentation process using enzymatic strain enhances the bio fuel Production from lignocellulosic biomass

Bio ethanol is an attractive, sustainable energy source to fuel transportation, produced from kinds of biomasses. Among kinds of biomass, lignocellulosic biomass is a very useful feedstock to economically produce environmentally friendly biofuels. The main goal of the research described in this paper is to investigate the process of pretreated biomass, acid or enzymatic hydrolysis, Fermentation...

متن کامل

Algal biomass conversion to bioethanol - a step-by-step assessment.

The continuous growth in global population and the ongoing development of countries such as China and India have contributed to a rapid increase in worldwide energy demand. Fossil fuels such as oil and gas are finite resources, and their current rate of consumption cannot be sustained. This, coupled with fossil fuels' role as pollutants and their contribution to global warming, has led to incre...

متن کامل

Biotechnology strategies with industrial fuel ethanol Saccharomyces cerevisiae strains for efficient 1st and 2nd generation bioethanol production from sugarcane

Background In Brazil the production of fuel ethanol is based on the fermentation of sucrose from sugarcane by selected industrial Saccharomyces cerevisiae yeast strains [1-3], a mature and highly competitive technology. Taking into account that the feedstock costs have a major role in the overall economics of the process, it is expected that more efficient conversions of sucrose into ethanol (1...

متن کامل

Waste Paper - Promissing Feedstock for Bioethanol Production

Modern approach to utilization of non-edible biomass is its conversion to glucose, and the following fermentation of the sugar into final bioproducts. Among various biomass types, the waste of office paper is distinguished by increased content of cellulose and negligible content of lignin; therefore it can be a suitable feedstock for bioconversion into valuable bioproduct, e.g. ethanol. An adva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014